

in co-operation with the Guernsey Renewable Energy Team

RE | 20 | Introduction

RE | 2012

The need for renewable energy

- Energy security
- Human-caused global warming sustainability
- Financial
 - Rising fossil fuel costs
 - Returns on investment
- A new industry diversity

Project Scope

STATES OF GUERNSEY

- Commerce and Employment
- Renewable Energy Team (RET)

Focus on the strategic implementation of offshore wind, wave and tidal energy; to develop an energy management strategy for Guernsey.

Overview

Offshore wind

Tidal

Wave

Onshore

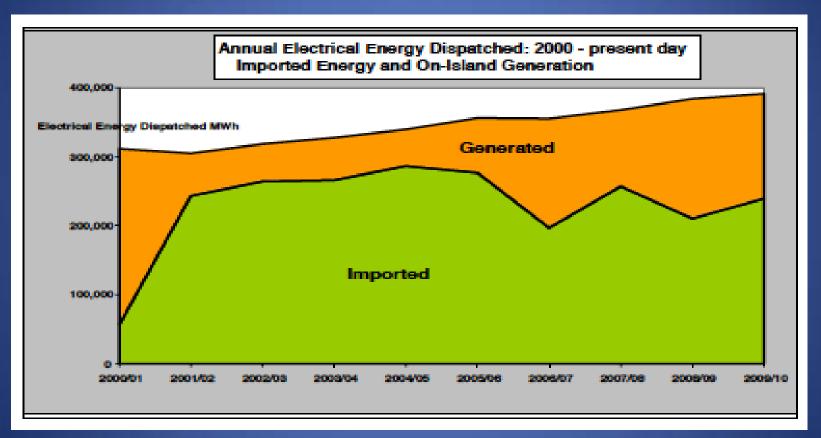
Infrastructure

Public consultation

Scenarios

RE | 20 | 2 | Overview

Current Demand


I of 2

- 85 MW maximum demand
- 35% increase in 10 years
- 23 MW baseload
- 2 MW increase in 5 years
- Met by imported electricity and on island generation

Current Demand

2 of 2

Source: Guernsey Electricity

Imported electricity

Guaranteed 16 MW

Can draw up to 55 MW if available – depending on Jersey's demand

On Island Generation

• 115 MW capacity

Five 2-stroke slow speed diesel generators

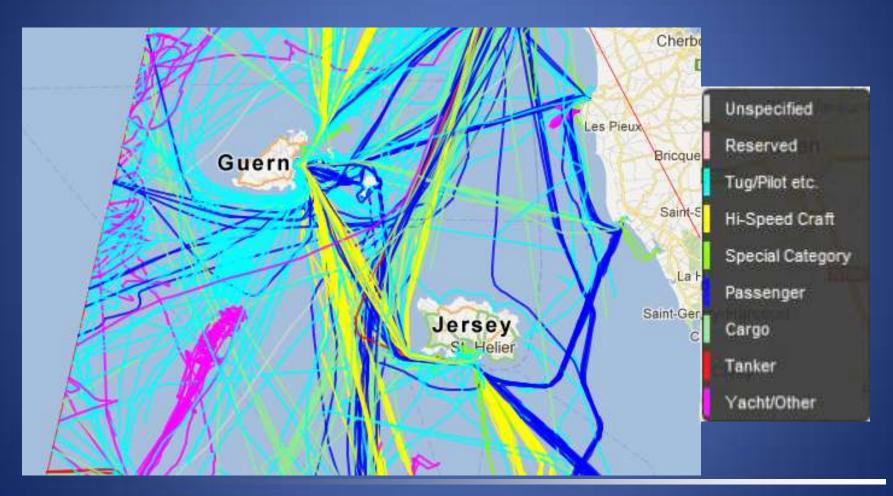
Three gas turbines

Current Cost

400 GWh consumed in 2010/11

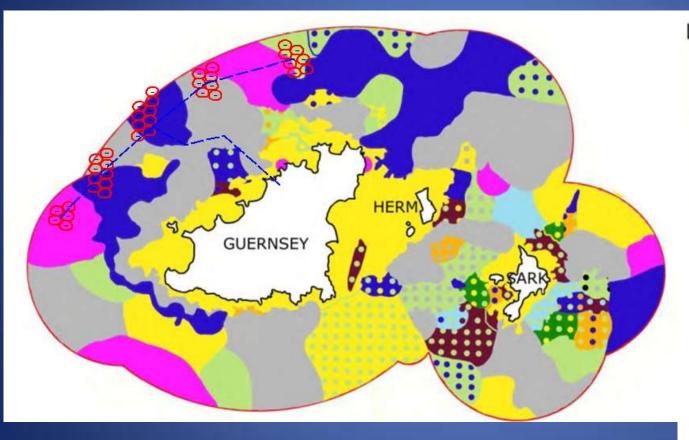
 Average cost to consumers of 12.33p/unit (kWh)

Total annual cost to Guernsey consumers of £48.5m


RE | 20 | Technologies

Constraints

- Environmental
 - Sea mammals
 - Fish
 - Flora and fauna
- Fishing
- Seabed/bathymetry
- Visual impacts
- Shipping



Constraints - Shipping

Constraints - Geology

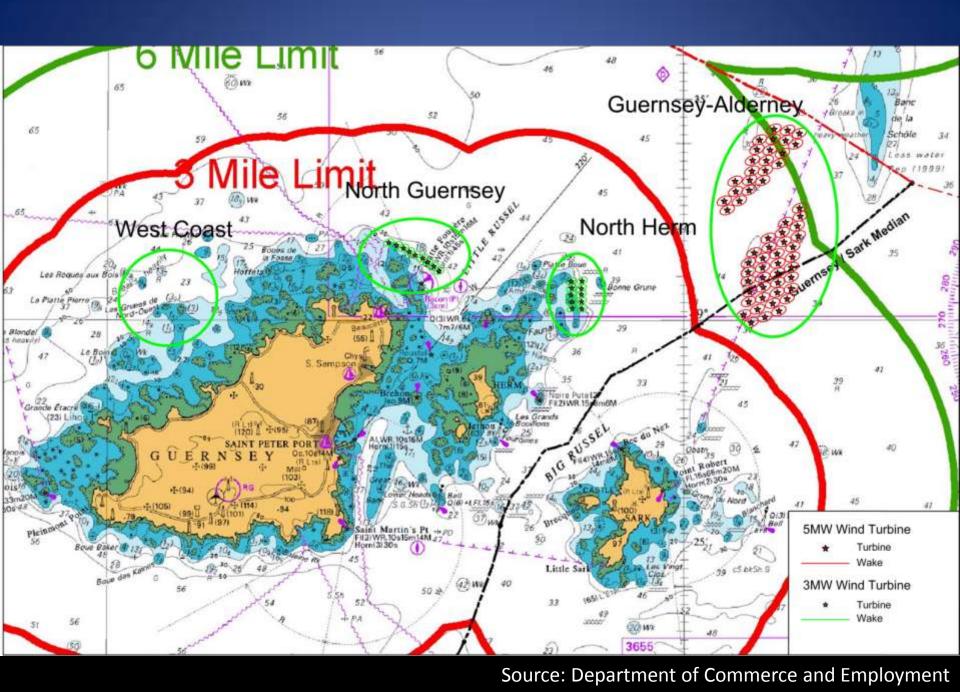
Legend:

- Rock
- Sand
- coarse Sand
- fine Sand
- Gravel
- Shells
- Stone
- Pebbles
- Mud
- Weed
- mixed sediments, e.g. Sand and Shells

RE | 2012 | Offshore Wind

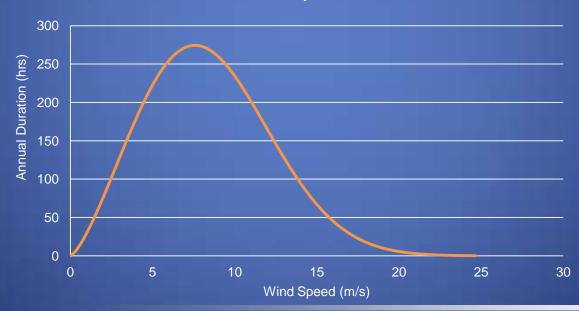
Introduction

- Feasibility study review
- Further wind farm sites located
 - 30MW capacity
 - 300MW capacity



Feasibility Review

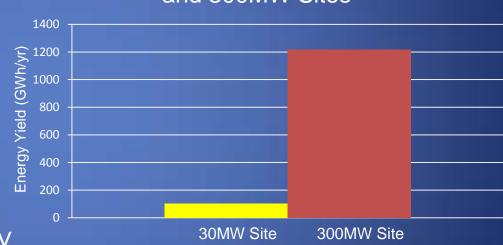
- Identification of two wind farm sites:
 - 12MW, 4 turbines (too small)
 - 30MW, 10 turbines
- 30MW site could be developed in conjunction with a French offshore wind farm
- Visual impact is a key issue
- Recommendations
 - Reliable wind speed estimates using met-mast at Chouet combined with airport wind speed data



Wind Resource

- Wind resource analysis
 - 8.5m/s at 80m (Vestas V90 hub height) at Chouet
 - Weibull distribution applied

80m Chouet Wind Speed Distribution



Site Selection - Further Sites

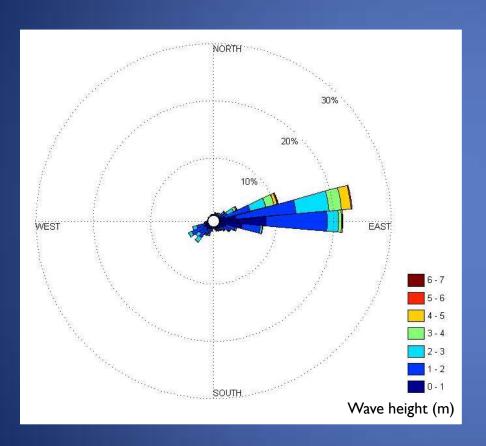
- Constraints considered
 - Available resource
 - Distance from the shore
 - Geology
 - Bathymetry
 - Environmental factors
- Potential wind farm sites
 - North Herm 30 MW
 - North Guernsey 30 MW
 - North East Guernsey 300 MW
- Energy yield
 - 30 MW generates 100GWh/year (25%)
 - 300 MW generates 1200GWh/year (300%)

Image for the proposed 30MW array off the west coast by Guernsey Press (15th February 2012)

Turbine Selection and Foundation

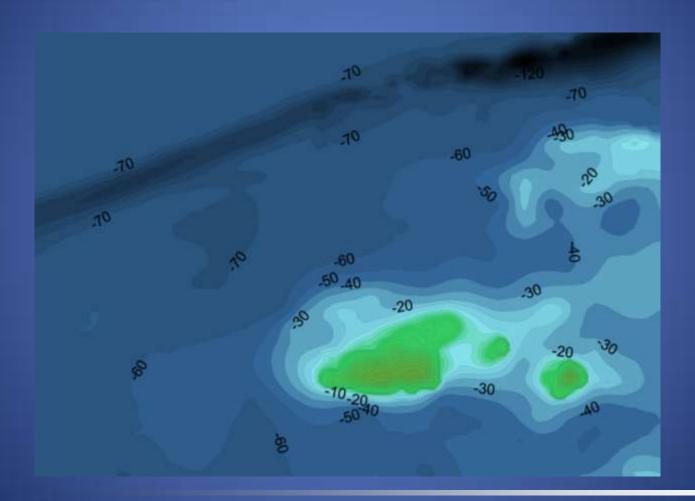
- Near shore 30MW sites
 - 3MW 'V90' Vestas turbine
- Far from shore 300MW site
 - 5MW '5M' RePower turbine
 - Maximises energy yield
 - Minimises cost per MW installed
- Foundations
 - Geology
 - Water depth
 - Monopile, jacket, tripod or concrete gravity-based
 - Geotechnical and hydrodynamic loading surveys

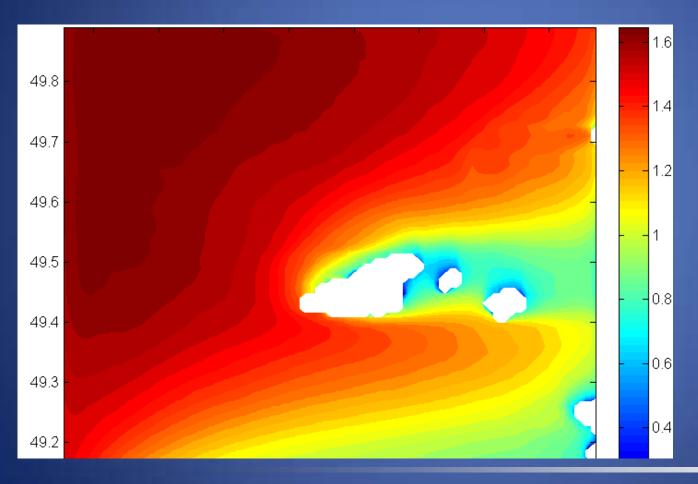
Source: renews.biz 2012


Infrastructure

- Offshore substation
 - Not required for the 30MW wind farms
 - Required for 300MW wind farm
 - Costly electrical installation
 - Considerable power conditioning and protection equipment
- Subsea cables
 - Requires detailed seabed study
- Operation and Maintenance
 - Servicing
 - Ports

RE | 20 | 2 | Wave Energy


Wave Resource



Constraints - Bathymetry

Near-shore Wave Modelling

Significant Wave Height (m)

Using predominant sea state of 1.5m Hs and 5.5 s Period

Wave Resource

	Guernsey Sea State Probability										
	Period (s)										
Significant Wave Height(m)		3 - 5	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10	10 - 11		
	0 - 1	1.2	3.4	3.9	4.4	4.9	3.6	1.7	0.8		
	1 - 2	0.1	5.5	10.8	9.7	8.2	6.1	4.9	2.5		
	2 - 3			2.3	3.7	4.0	3.1	2.5	2.0		
	3 - 4				0.2	0.6	1.5	1.0	1.0		
	4 - 5					0.1	0.9	1.0	0.2		
	5 - 6						0.1	0.2	0.0		
	6 - 7								0.1		

	Wave Power (kW/m) Period (s)									
		3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	
	0.5	0.0	1.1	1.4	1.6	1.9	2.1	2.4	2.6	
	1.5	7.9	10.1	12.4	14.6	16.9	19.1	21.4	23.6	
Significant	2.5			34.4	40.6	46.9	53.1	59.4	65.6	
Wave Height(m)	1.6				16.6	19.2	21.8	24.3	26.9	
neight(iii)	3.5					91.9	104.1	116.4	128.6	
	4.5						172.1	192.4	212.6	
	5.5								317.6	

Land

Pelamis

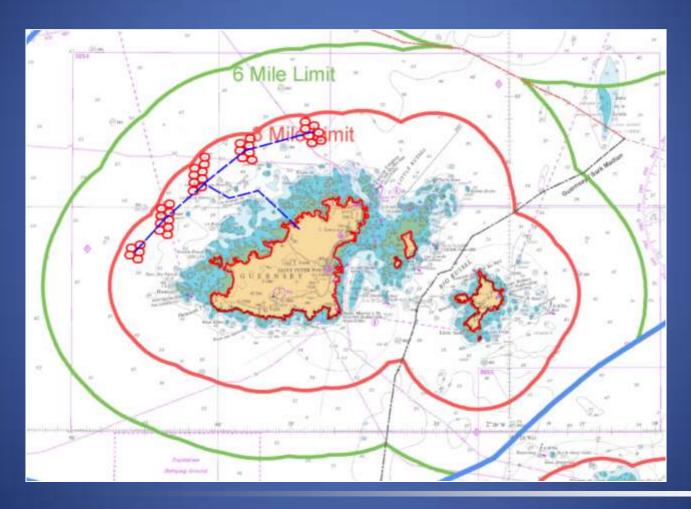
Wave Resource

	Pelamis Power Matrix (kW)									
	Period (s)									
		3 - 5	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10	10 - 11	
	0 - 1			14.0	18.0	19.0	17.0	14.0	11.0	
	1 - 2		44.5	90.0	115.5	119.0	108.0	90.0	73.0	
Significant	2 - 3		109.0	220.0	282.0	285.0	254.0	211.0	178.0	
Wave Height(m)	3 - 4			408.0	489.0	477.0	426.0	355.0	300.0	
neight(iii)	4 - 5			544.0	684.0	668.0	616.0	515.0	427.0	
	5 - 6				750.0	750.0	744.0	685.0	575.0	
	6 - 7					750.0	750.0	750.0	743.0	

Rated	Capacity	-	/50	KVV

No. of Devices - 37

Installed Capacity ~ 30MW


Device Yield – 0.1 GWh p.a

Array Yield – 41 GWh p.a

				Annual	Energy Yie	ld (kWh)						
		Period (s)										
		3 - 5	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10	10 - 11			
	0 - 1	0	0	4823	6956	8159	5326	2145	730			
Cianificant.	1 - 2	0	21584	84760	98292	85128	57865	38559	15887			
Significant Wave	2 - 3			44874	92197	99575	68665	46127	31095	F		
Height(m)	3 - 4				9545	25138	57789	30142	25179			
rieigiit(iii)	4 - 5					3260	49898	46742	9168			
	5 - 6						5083	13370	2245			
	6 - 7								6526			
								Annual Yield (GWh)	41			

Site Location

Site Constraints


RE 2012 Tidal

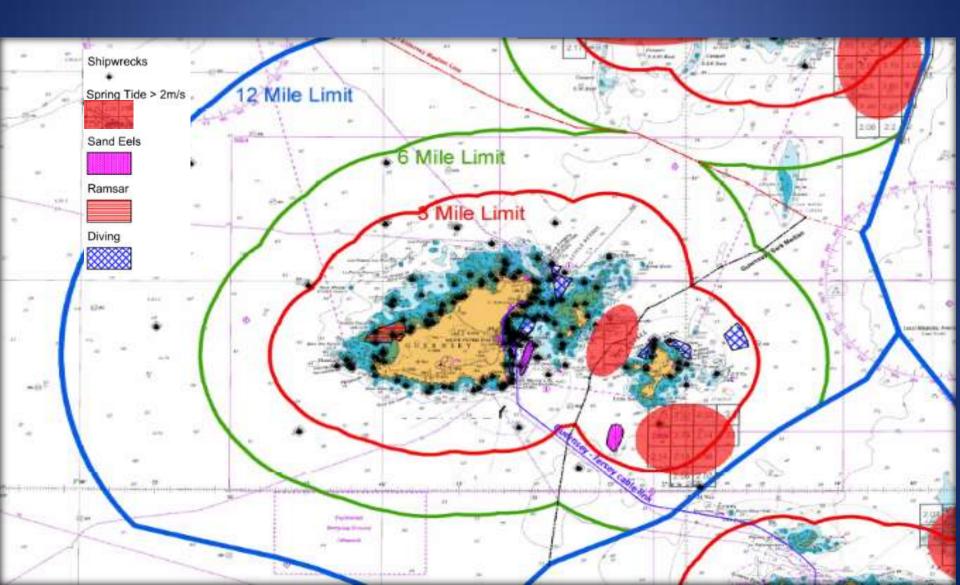
Tidal Stream Technology

Technology types and industry front-runners

SeaGen (1.2MW,2MW)

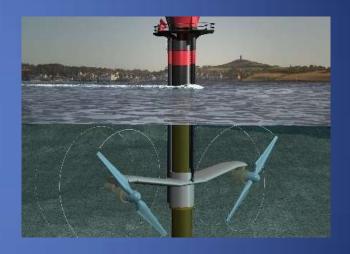
Open Hydro (2.2 MW)

Hammerfest (IMW)


Guernsey - Site Selection Criteria

Considerations and Constraints

- Tidal resource (at least 2m/s spring tide)
- Water depth (up to 50m)
- Bathymetry (Seabed profile)
- Environmental
- Safety and navigation (shipping routes, etc.)



GIS mapping - Guernsey

Site Assessment - Methodology

- Limited data available
- Tidal profile for local area
- Probability graph derivation
- Application of SeaGen
 I.2 MW device power
 curve

Site Assessment - Findings

3 nautical mile radius

Big Russell (6km sq, < 40m depth)

- Feasible potential 2 x 100 MW arrays (200 MW)
- 83 x SeaGen 1.2 MW devices
- Energy Production: 566 GWh/year (~140% of Guernsey's annual demand)

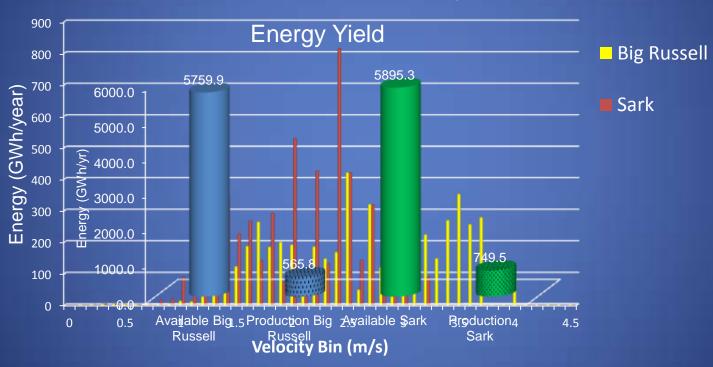
Site Assessment - Findings

3 nautical mile radius

South East of Sark

- Feasible potential 2×200 MW arrays (400 MW)
- 166 x SeaGen 1.2MW devices
- Energy Production: 750 GWh/year (~190% of Guernsey's annual demand)

Site Assessment - Findings


12 nautical mile radius
South East of Sark

Hammerfest tech applicable (up to 70m depth)

Energy (GWh/year)

Tidal Stream Project Costs

- Lack of case studies to give accurate cost indication
- R&D projects (£10m/MW)
- Technology commercially available by 2014
- Cost reductions estimated at 40% by 2040
- CAPEX: ~£3.5m/MW in 2020
- Cost of 30MW installation: £106m
- Cost of 200MW installation: £712m
- O&M costs: 2.1% of CAPEX

R&D and testing opportunity

- R&D site used for commercial purposes in the future
- Joint projects with other islands
- Control over site licensing and leasing attractive to developers
- Engage with selected developer(s) to speed up the process
- Introduction of the concept to the public
- Key barrier lack of incentive/subsidy

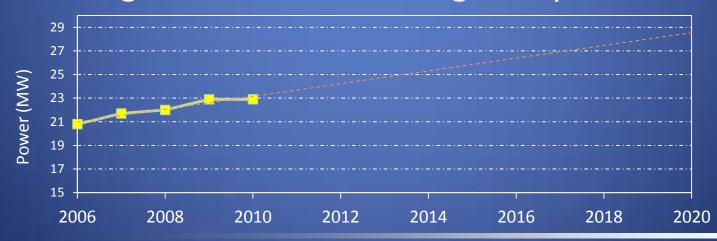
Conclusions

- Substantial tidal stream resource
- Potential to generate > 100% of Guernsey's demand
- Further investigation into cost required
- Early preparation will make process smoother

RE | 2012 | Infrastructure

Infrastructure

- Electrical Grid Infrastructure
- Port Infrastructure
- Energy Storage
- Transport Infrastructure


Electrical Grid Infrastructure

- Current case
 - Capable and expandable network
 - Plans to improve and increase 33kV grid
 - Second interconnector discussions

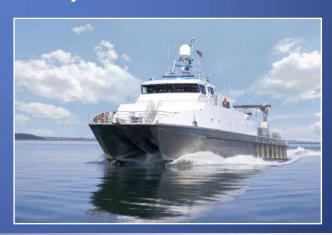
Electrical Grid Infrastructure

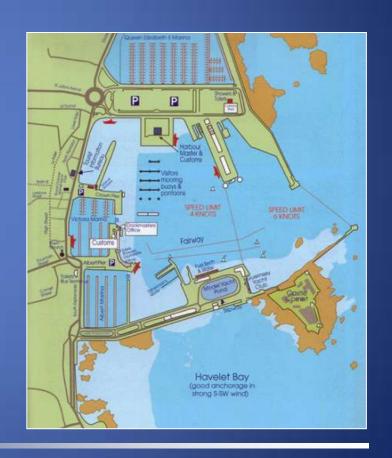
- Base-load scenario
 - 12.5MW maximum from renewable sources
 - GEL modelling up to 30MW
 - No large infrastructure changes required

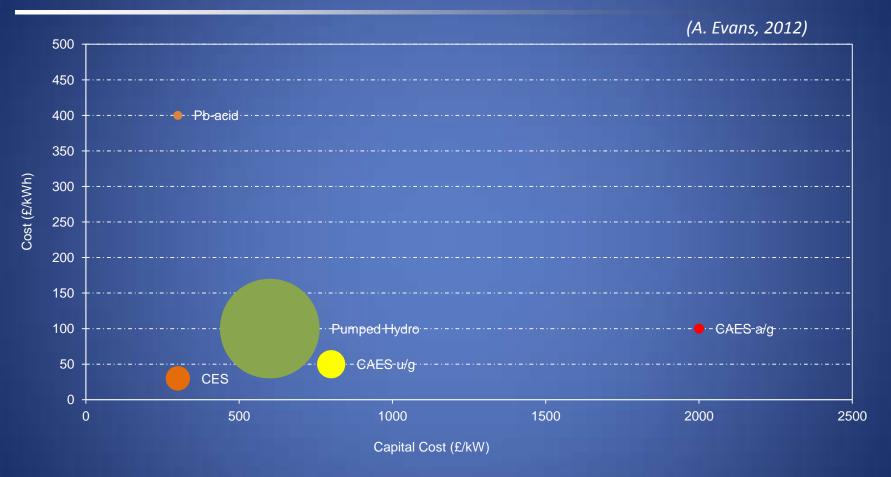
Electrical Grid Infrastructure

- Export scenario
 - Second interconnector required
 - Grid strengthening if power comes onto the island
 - Further modelling and consultation with GEL

St Peter Port Harbour & St Sampson's Harbour


- Harbour requirements
 - Mooring and refuelling for vessels
 - Surveying
 - Foundation Installation
 - Device Installation
 - Operations & Maintenance
 - Storage space for technologies


- Base-load scenario
 - Too costly to expand at this level
 - Large vessels: use French harbours e.g., Cherbourg
 - Smaller vessels: use Guernsey harbours



- Export scenario
 - Use French harbours or
 - Include marine renewables in harbour master plan
 - Costly but part of overall master plan

Energy Storage

Note: Size of circle represents the storage capacity of given technology

Transport Infrastructure

- Electrification of Transport
 - Indirect impact
 - Increase demand on network
 - GEL models consider possibility
 - Energy storage provision

Conclusion

- Base-load possible with current plans
- Export requires longer term plans
- Keep open communication between stakeholders

RE 2012 Public Consultation

Stakeholders

- Public
- Sustainable Guernsey
- Fishermen
- Local RE companies
- Tourist industry
- Harbourmaster
- Local businesses
- Energy utilities

Education – Schools

- Curriculum review
- Energy
- Questionnaire
- Teaching aids
- Awareness Program

Source: marcus-povey.co.uk

Raising Awareness

- Government
- Planet Guernsey
 - Towards A Sustainable Future
 - Riding The Storm
- Role of employers public and private
- Training

Recommendations

- Planned
- Level of engagement
- Target specific groups
- Phased approach
- Questionnaire

RE | 20 | 2 | Scenarios

Scenarios

• 3 Scenarios:

I. No renewables

2. Baseload

3. Export

Scenario I-Introduction

No renewables

 Continuing reliance on imported electricity and on island diesel generation

Rising demand

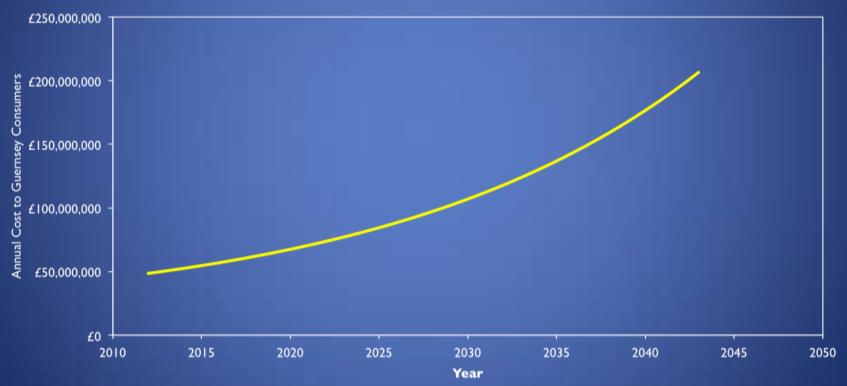
Scenario I – Assumptions

• Cost to consumer rises 5.5%/year

• Electricity demand rises at 0.4%/year

Scenario I – Conclusions

I of 2


- On island generation costs rise as oil prices rise
- Import costs to rise
- Electricity supply therefore likely to become substantially more costly.
- Reliant on France
- Does nothing to tackle emissions

Scenario I – Conclusions

2 of 2

Cost of Electricity to Consumers Under Scenario 1

Scenario 2 - Introduction

 Meets Guernsey's baseload with marine renewables only

No access to French or UK subsidy

Tidal or offshore wind

Scenario 2 - Projections

 Baseload demand increased 4MW over last ten years

 Tidal stream capital cost £3.6m/MW by 2020 and £3.3m/MW by 2030

Offshore wind capital cost £2.9m/MW currently

Scenario 2 - Recommendations

- Substantial financial undertaking will require initial subsidy.
- Cable contract until 2023 means a planned, phased approach should be considered
- Energy storage and balancing options greatly affect viability and need to be considered.
- Costs still uncertain

Scenario 3 - Introduction

- Based on the assumption that the electricity will be predominantly exported.
- UK and France primary options
- Extensive legal challenges
- Challenging to model and assess

Scenario 3 – Export Options

• UK

Technology	Subsidy	Feasibility
Tidal	5 ROCs (~£200/MWh)	2020-2025
Offshore Wind	2 ROCs (~£80/MWh)	Currently
Wave	5 ROCs (~£200/MWh)	2030-2050

France

Technology	Subsidy	Feasibility	
Tidal	€150/MWh (~£120/MWh)	Not currently	
Offshore Wind	€120/MWh (~£100/MWh	Currently	
Wave Subsidy yet but o	€150/MWh discussi ons₁baye₁bee n starte	Not currently	

Can't access either su

Scenario 3 - Capacity

Technology	Capacity	Annual Yield	No. of sites
Tidal	60MW	1130GWh	2
Offshore Wind	390MW	1500GWh	4
Wave	28MW	40GWh	1

IGW total, producing ~ 2700GWh/year
 (almost 7x Guernsey's current annual demand)

Scenario 3 – Conclusions

- Export to the UK most attractive currently, this could change
- Infrastructure considerations
- Legal and commercial research
- Significant barriers restricting feasibility

Conclusions

- The non-financial advantages need to be fully considered.
- 'No renewables' leaves Guernsey vulnerable of significant energy cost rises
- A renewables programme with a mix of selfuse and export is most attractive yet needs access to appropriate subsidies
- Just meeting baseload is currently most viable

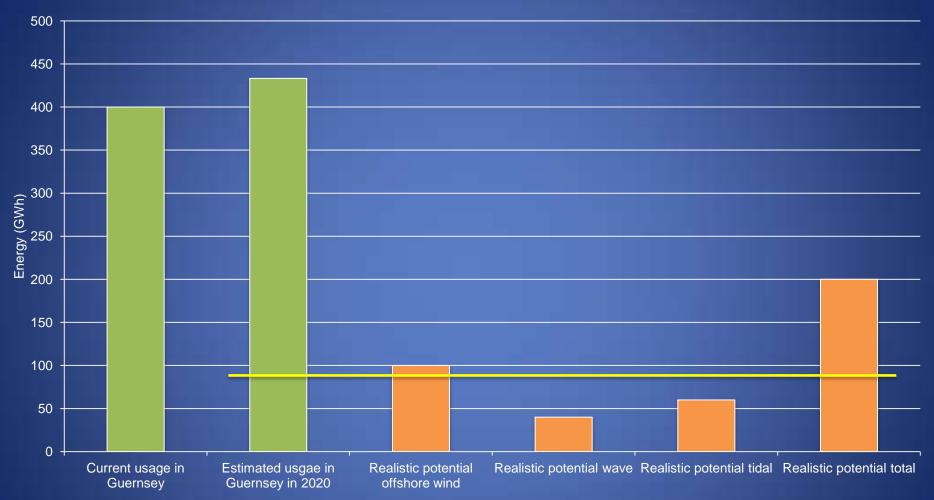
RE | 2012 | Conclusions

Offshore wind

- Good wind resource
- I2MW too small, 30MW and 300MW potentially feasible
- Visual impact is a key concern for near-shore sites
- Detailed environmental studies at chosen site
- I-2 year wind speed data collection at Chouet metmast
- Obtain aviation, radar and communications data
- Detailed cost analysis

Wave

- Early analysis significant resource
- Further research required
 - Wave buoys
 - Radar wave monitoring
- No complete wave energy converter solution
- Costs still largely unknown



Tidal

- Very promising tidal stream resource
- Two sites in 3nm radius could generate
 >100% of Guernsey demand
- Costs still uncertain
- Potential for R&D
- Streamline licensing system
- Prepare groundwork now, ready for the future

Realistic potential for macro-marine renewable energy in Guernsey by 2020-2025

Potential Impacts

Impacts arising from different phases in the project:

- Energy security
- Environmental
- Visual impacts
- Employment diversity
- Potential export revenue
- Kudos and satisfaction

RE | 2012 | Acknowledgements

Acknowledgements

- Commerce and Employment
- Environment Department
- Guernsey Renewable Energy Team
- Guernsey Electricity Ltd.
- All those who assisted in meetings
- Sea Fisheries RIB tour
- Digimap
- Harbour Master

